Mark scheme – The Halogens

Question		on	Answer/Indicative content	Marks	Guidance
					Results can be interpreted anywhere in answer.
					ALLOW multiples, e.g. $\frac{1}{2}Br_2 + I^- \rightarrow Br^- + \frac{1}{2}I^2$ IGNORE other halogen/halide equations
					IGNORE state symbols
					ALLOW ORA
					DO NOT ALLOW idea of losing electrons/ionisation energy
			Interpretation of Results		IGNORE chlorine is the most electronegative
			Orange contains bromine AND no reaction AND violet contains iodine \checkmark	5	IGNORE explanations in terms of displacement
			Ionic equation Br ₂ + 2I ⁻ \rightarrow 2Br ⁻ + I ₂ \checkmark	(AO 2.3× 1)	Examiner's Comments
1	а		Reactivity (down the group) Reactivity decreases AND oxidising power decreases OR gains electrons less easily OR forms negative ion/1– ion less easily OR less energy released when electron gained √ OR more negative electron affinity Size/shells/shielding (down the group) Greater atomic radius OR more shielding √ Attraction (down the group) Less nuclear attraction down the group √	(AO 2.6×1) (AO 1.1×3)	This question required the candidate to explain the reactivity of the halogens given experimental observations. Higher-attaining candidates were able to explain the observations with ionic equations and explain the reactivity in terms of gaining electrons. Some candidates did not associate the colour with the halogen and linked it with the halide ion, but then did explain the trend in reactivity due to the ability to gain electrons. Lower- attaining candidates explained the reaction in terms of displacement (which was ignored) and they did not proceed with ionic equations or describe the ability to gain electrons.
					Misconception Some candidates linked the ability to gain electrons to ionisation energy rather than electron affinity. The colour of the organic
					layer was also associated with the halide ion rather than the halogen.

					Further guidance can be found in the AS Level delivery guide 'Theme: Patterns' (Group 2 and Group 17): https:/www.ocr.org.uk/Images/231740- patterns.pdf
	b		Benefit AND risk required for ONE mark Benefit: kills bacteria √ AND toxic/poisonous OR forms chlorinated Risk: hydrocarbons OR forms carcinogens/toxic compounds √	1 (AO 1.1)	ALLOW kills micro-organisms OR kills pathogens OR kills viruses OR sterilises/disinfects water IGNORE antiseptic, reduces risk of disease, cleans water IGNORE 'harmful'/'dangerous' IGNORE chlorine is carcinogenic/ dangerous for health/causes breathing problems
			Total	6	
2		i	Sodium bromate(V) √	1 (AO2.5×1)	Examiner's Comments Very few candidates scored this mark. Although a number of candidates did give sodium bromate as the answer (with the omission of the oxidation state), many other answers were seen suggesting candidates are not aware of naming conventions for inorganic compounds.
		ii	Br is oxidised AND reduced OR Br oxidation number is increased and decreased \checkmark Br is oxidised from 0 to +5 \checkmark Br is reduced from 0 to -1 \checkmark	3 (AO1.1×1) (AO2.2×2)	 ALLOW same element is both oxidised and reduced ALLOW 1 mark if all 3 oxidation numbers are correct (even if oxidation/reduction incorrectly assigned) Examiner's Comments This is the first time in a reformed chemistry AS paper that the question space has been left unstructured for oxidation number changes. The highest-attaining candidates set out their responses clearly, dealing with changes for oxidation and reduction separately, and giving the correct oxidation numbers. Some struggled to obtain an oxidation state of Br in NaBrO₃ as +5, suggesting +1 instead.
			Total	4	
3			Electrons (down group) number of electrons increases √	3 (AO1.1×3)	FULL ANNOTATIONS MUST BE USED ALLOW more electron shells

					not for different boiling points. The contrast in the clarity of low- and high-attaining candidate responses was particularly pronounced for this question.
			Total	3	
4			ASSUME trend is down the group (unless stated otherwise) Forces London forces increase OR induced dipole(-dipole) interactions increase √ Reason (Number of) electrons increases √ Link to energy and particles More energy to break intermolecular forces OR to break London forces OR to break induced dipole(-dipole) interactions √	3	FULL ANNOTATIONS MUST BE USED
			Total	3	
5	а	i	Disproportionation Oxidation AND reduction of same element/iodine OR lodine has been oxidised and lodine has been reduced √ Oxidation from 0 to +1 in HIO √ Reduction from 0 to -1 in HI √	3	ALLOW I or I ₂ for iodine IGNORE numbers around equation for oxidation states ALLOW 1- for -1 AND 1+ for +1 NOTE (for iodine/I ₂) from 0 only needs to be seen once, does not need to be stated twice ALLOW 1 mark for 3 ox nos correct but no mention of words oxidation/reduction:

				 ALLOW 1 mark for species missing: lodine oxidised (from 0) to +1 AND iodine reduced (from 0) to −1 <u>Examiner's Comments</u> Most candidates were aware of disproportionation but lost marks by not stating the species or whether the process was oxidation or reduction. Exemplar 2 () todine repets with water as shown below.
				Here the candidate has lost a mark for not stating the initial oxidation number of elemental iodine as 0.
	ii	Chlorine is toxic/poisonous OR forms halogenated hydrocarbons OR	1	 ALLOW (reacts with hydrocarbons to) form carcinogens/toxic compounds IGNORE chlorine causes cancer harmful/dangerous chlorine causes breathing problems
		forms carcinogens/toxic compounds √		Examiner's Comments The majority of candidates stated that chlorine is toxic or forms carcinogens, although some stated that chlorine is a carcinogen which was not credited. 12
b	i	$Br_2 + 2I^- \to I_2 + 2Br^- \checkmark$	1	ALLOW multiples IGNORE state symbols Examiner's Comments Around 50% of candidates answered this correctly. The most common error was not balancing the equation, and many did not know what an ionic equation was.
	ii	lodine has a larger atomic radius √	3	ORA ALLOW iodine is larger / bromine is smaller

		lodine has greater shielding / more shells \checkmark		ALLOW electron added to a shell further from the nucleus
		lodine has weaker / less nuclear attraction (on electron gained than bromine) √		ALLOW bromine has greater nuclear attraction
				IGNORE 'gained less easily' for 'weaker attraction'
				IGNORE references to ionisation energy
				DO NOT ALLOW mention of losing electrons for M3
				ALLOW 'pull' for 'attraction'
				IGNORE just 'greater attraction' OR greater force
				Examiner's Comments
				This question was answered well by most candidates, although some omitted the word 'nucleus' when explaining attracting electrons, or answered in terms of losing electrons, and did not have the final marking point credited.
		Total	8	Exemplar 1 Technic it for ceacher the tecone it does not accept cledrow or certify of the it become it does he accept cledrow or certify of the it clears for the maleur on thebase is restrict to it does not contain the maleur on thebase is restrict to the selection the maleur on thebase is restrict to the selection we have a clear shilling on the theorem is the does we have a clear shilling on the theorem is the does we have a clear shilling on the theorem is the does we have a clear on the theorem is the does we have a clear on the theorem is the does we have a clear on the theorem is the does we have a clear of the theorem is the does we have a clear of the theorem is the does we have a clear of the theorem is the
				allow $3Br_2 + 6KOH \rightarrow 5KBr + KBrO_3 + 3H_2O$
6		Br2 + 2KOH → KBr + KBrO + H2O (1)	1	allow ionic equation
		Total	1	

7		i	Disproportionate: oxidation and reduction of the same element √ Redox: Cl is oxidised from +5 (in KClO ₃) to +7 (in KClO ₄) √ Cl is reduced from +5 (in KClO ₃) to −1 (in KCl) √	3	 ALLOW 'chlorine' OR 'C/' for same element IGNORE 'species' for 'element' ALLOW after number, e.g. 5+ IGNORE ionic charges, e.g. Cl⁵⁺ IGNORE '5' (signs required) IGNORE any reference to electron loss / gain (even if wrong) ALLOW one redox mark if oxidation numbers are correct but reduction / oxidation is incorrectly assigned Examiner's Comments The question asked candidates to state what disproportionation meant. Many candidates failed to give this statement, despite correctly identifying the change in oxidation number and correctly assigning the redox terms.
		ii	potassium chlorate(VII) √	1	Brackets required Examiner's Comments It was apparent that the idea of systematic naming of compounds was not known by many candidates. Of those who realised that Roman numerals were required, many showed uncertainty of the identity of the Roman numeral to be used or positioned the numeral at an inappropriate place within the name of the compound.
			Total	4	
8	а	i	Silver nitrate OR AgNO₃ √	1	ALLOW Ag ⁺ IF name correct, IGNORE an incorrect formula IGNORE acidified/HNO ₃ <u>Examiner's Comments</u> Most candidates responded correctly with either the name of the reagent: silver nitrate, or its formula: AgNO ₃ .
		ii	Chloride: white (precipitate) AND Bromide: cream (precipitate) AND iodide: yellow (precipitate) √	1	All three required for the mark Examiner's Comments The colours of the silver halide precipitates

				were well known and very few candidates failed to score here. Where mistakes were made, it was to put the three colours in the wrong order or to show the colours of halogens in solution.
Ь	i	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁶ √ Look carefully at 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ – there may be a mistake	1	ALLOW 3d after 4s ² or after 4p ⁶ , e.g. 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶ ALLOW upper case D, etc and subscripts, e.g4S ₂ 3D ₁ DO NOT ALLOW [Ar] as shorthand for 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ Examiner's Comments This part was generally answered well showing a good understanding of electron configuration. When incorrect, it was usually for giving the configuration of a bromine atom rather than a bromide ion, or the subtraction of an electron rather than addition giving 4p ⁴ .
	ïi	$Cl^2 + 2Br^- \rightarrow 2Cl^- + Br_2 \checkmark$ Chlorine/Cl/Cl₂ is more reactive/stronger oxidising agent OR reactivity decreases down group √	2	ALLOW multiples, e.g. $\frac{1}{2}Cl_2 + Br^- \rightarrow Cl^- + \frac{1}{2}$ Br ₂ IGNORE state symbols ALLOW bromine is less reactive IGNORE explanation in terms of electronegativity Examiner's Comments Most candidates identified that chlorine was the more reactive element, although a significant number responded in terms of electronegativity. More commonly, it was the equation that was incorrect, usually unbalanced or with bromine reacting instead of chlorine.
С		Benefit AND risk required for mark Benefits: kills OR removes bacteria AND Risk: toxic/poisonous OR forms chlorinated hydrocarbons OR forms carcinogens/toxic compounds √	1	ALLOW kills germs OR kills micro-organisms OR kills pathogens OR sterilises/disinfects OR makes water potable/ safe to drink OR purifies water IGNORE antiseptic, reduces risk of disease, cleans water ALLOW reduces risk of water-born diseases, e.g. cholera/typhoid/dysentery IGNORE 'harmful'/'dangerous' IGNORE chlorine is carcinogenic/ dangerous

			for health/causes breathing problems
			Examiner's Comments
			Most candidates scored this mark by stating a benefit (usually 'kills bacteria') and a risk (usually 'toxic' or 'forms carcinogenic compounds'). Vaguer terms such as 'harmful', 'can make you ill', etc, were not credited.
	Total	6	
	M1 <i>Mixing of first pair of solutions</i> Adding (aqueous) barium chloride to bromine (water) OR		For M1 and M2 ALLOW any halide for the named halides in the question eg 'potassium chloride' for barium chloride 'potassium bromide' DO NOT ALLOW 'barium chlorine/BaCl' 'calcium iodine/Cal' 'magnesium bromine/MgBr' as the halide DO NOT ALLOW 'bromide' for 'bromine' OR 'iodide' for 'iodine' M1 can be seen anywhere M2 could be awarded from a correct ionic equation in M4
	BaCl ₂ + Br ₂		M2 can be seen anywhere If both M2 tests and M1 are given, this will nullify M5
9	M2 <i>Mixing of second pair of solutions</i> Adding (aqueous) calcium iodide to bromine (water) OR Cal ₂ + Br ₂ OR Adding aqueous magnesium bromide to aqueous iodine OR MgBr ₂ + I ₂	5	M3 is given for the correct resultant colour of pairs of solution given in M1 and M2. If both possible pairs of solutions in M2 are given, both colours must be correct. IGNORE colours of other combinations of solutions IGNORE colours in the aqueous layer if stated
	M3 Colours in cyclohexane Colour for M1 is orange OR yellow AND Colour for M2 is purple OR violet OR mauve OR pink OR lilac M4 Ionic equation mark $Br_2 + 2l> l_2 + 2Br$ M5 Use of M1 and one of M2 as only two		DO NOT ALLOW other colours for M1 and M2 (eg iodine is brown) M4 can be awarded anywhere M4 also scores M2 if not already awarded ALLOW multiples IGNORE state symbols IGNORE I ₂ + 2Br> I ₂ + 2Br- IGNORE Br ₂ + 2CI> Br ₂ + 2CI- DO NOT ALLOW other ionic equations DO NOT ALLOW if more than two experiment are attempted even if pointless eg 'barium chloride + calcium iodide' Place the 'tick' for M5 against the sub-total
	experiments		mark, [5], at the bottom right hand side of the answer space

				Examiner's Comments Able candidates were able to provide full answers involving only two reactions, one ionic equation and correct colours of products in succinct form. Some candidates answered the question correctly then ignored the instruction to keep the number of reactions to a minimum and gave an unnecessary third confirmatory reaction. This question distinguished well for many weaker candidates were unable to produce chemically coherent responses. Suggestions for 'impossible' reactions such as adding magnesium bromide to calcium iodide were frequently seen from such candidates.
		Total	5	
10	i	Equation 2NaOH + Cl ₂ → NaCl + NaClO + H ₂ O \checkmark Conditions cold AND dilute (sodium hydroxide) \checkmark	2	ALLOW correct multiples IGNORE state symbols ALLOW room temperature OR ≤ 20°C for cold Examiner's Comments This question was perhaps not as well answered as it might have been and although some candidates had memorised the equation that was needed here, many clearly had not and more alarmingly such candidates were then content to suggest equations which were chemical nonsense. It was very uncommon indeed to see candidates pick up the second mark for giving the correct conditions required to form bleach from chlorine, with few realising that as well as being cold, the NaOH(aq) needs to be dilute.
	ii	Definition of disproportionation mark M1 (Disproportionation) is the (simultaneous) oxidation and reduction of the same element (in the same redox reaction) ✓ M2 Assigning of oxidation numbers Cl in Cl ₂ is 0 AND Cl in NaCl is -1 AND Cl in NaClO ₃ is +5 ✓	3	ALLOW 'an element' OR 'a species' for 'the same element' Assume 'it' means disproportionation M1 can be awarded for 'chlorine is oxidised and reduced and this is disproportionation' ALLOW oxidation numbers written above the equation if not seen in the text but IGNORE oxidation numbers written above the equation if seen in the text ALLOW 1- AND 5 AND 5+ DO NOT ALLOW chloride in place of chlorine

		Chlorine has been oxidised from 0 to +5 AND		except for NaCl DO NOT ALLOW Cl⁻ in NaCl AND Cl⁵+ in
		Chlorine has been reduced from 0 to $-1 \checkmark$		NaClO ₃ (ie do not allow ionic charges for
				ALLOW CLOB Clafor obloring
		Chloring has been exidined from 0 in Clute 15 in		
		NaClOs and shlaring has been reduced from 0 in		numbers of other elements are seen in the
		Clate 1 in NoCl' would accure M2 and M2		
				ext eg = +2
				ALLOW ECF for third marks if ONE incorrect
				oxidation number is assigned but directional
				changes are correct eg CI = 0 and -1 and +3
				Instead 0 and -1 and +5
				DO NOT ALLOW ECF if two oxidation
				numbers are incorrectly assigned
				IGNORE references to electron loss / gain
				If oxidation numbers are correct ALLOW third
				mark for: chlorine is oxidised to form
		301 + 6N20H -> 5N201 + N2010 + 3H.0		NaClO ₃ AND chlorine is reduced to form
		0 -1 +5		NaCl
		reduction		
		This disgram along with a correct definition		
		This diagram, along with a correct delinition,		
				Examiner's Comments
				The concept of disproportionation has been
				tested before and candidates were able to
				address this part of the question successfully.
				Weaker candidates met problems in assigning
				the oxidation numbers and in particular the Cl
				in NaClO ³ was frequently misassigned as +1.
				Another frequent mistake was to identify that
				both oxidation and reduction had taken place,
				but not to say which changes in the oxidation
				numbers of which species corresponded to
				each of these processes. A large number of
				candidates relied for one of their marks on the
				examiner marking their working shown above
				the equation. It should be stressed that a
				complete answer should aim to restate these
				key assignments of oxidation numbers within the text.
		Total	5	
		$NaC/O + 2HC/ \rightarrow NaC/ + C/_2 + H_2O$		
11	i	correct formulae of reactants, NaC/ and chlorine	2	anow NaciO ₃ + onci \rightarrow Naci + 3C/2 + 3H2O for 1 mark
		(1)		
		water and balancing (1)		
		Test: add (a few drops of aqueous) silver nitrate	_	ignore addition of dilute nitric acid before the
	l lii	(1)	2	AgNO₃

			Result: white ppt (1)		ignore redissolving in excess NH₃ or darkening of the ppt
		iii	separating funnel (1)	1	allow dropping pipette
			Total	5	
12		i	(1s²) 2s² 2p ⁶ 3s² 3p ⁶ 3d ¹⁰ 4s² 4p ⁶	1	ALLOW 4s ² 3d ¹⁰ 4p ⁶ ALLOW subscripts AND 3D IGNORE 1s ² seen twice Examiner's Comments Most candidates were awarded the mark available for the electron configuration of the bromide ion, but weaker responses included the electronic configuration of a bromine atom or of the ion, Br ⁺ .
		ii	Cream AND precipitate √	1	 ALLOW solid OR ppt for precipitate IGNORE 'does not dissolve' OR 'partially dissolves' Examiner's Comments Many candidates focused exclusively in their answers on the solubility of silver bromide in aqueous ammonia, writing as a result that the precipitate would remain, or that it would not dissolve and so not gaining the mark by omitting the colour of the precipitate.
		iii	Ag⁺(aq) + Br (aq) → AgBr(s)	1	Equation AND state symbols required Examiner's Comments The majority of candidates answered this question successfully with the only recurring error made being to omit some or all of the state symbols.
			Total	3	
13	а	i	(The solution would turn) yellow OR orange OR brown √	1	 ALLOW shades and colours (eg dark yellow, yellow-orange) DO NOT ALLOW 'purple' Examiner's Comments The lack of correct responses suggested that candidates may not have met this simple experiment. Centres are advised to use a practical approach in their teaching wherever possible. The most common error here was to suggest that the solution would turn purple.

	ii	Cl₂ (g) + 2I⁻ (aq) → l₂ (aq) + 2Cl⁻ (aq) √	1	ALLOW multiples State symbols required ALLOW Cl ₂ (aq) Examiner's Comments The equation was correct in the majority of responses but the mark was lost by candidates due the state symbols not being included in their answer. Where state symbols were present it was very common to see l ₂ given as a (g) rather than (aq). The reason for this is not clear but perhaps it stems from Cl ₂ being (g) in the reactants.
Ь		Cl₂ + 2NaOH → NaClO + NaCl + H₂O ✓	1	ALLOW multiples IGNORE state symbols ALLOW OH^- and CIO^- , i.e. $CI_2 + 2OH^- \rightarrow CIO^- + CI^- + H_2O$ ALLOW NaOCI Examiner's Comments This equation was directly from the specification and candidates were familiar with it. Errors in balancing were rare.
		Total	3	